skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shin, Sucheol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 21, 2026
  2. The hydration shells of proteins mediate interactions, such as small molecule binding, that are vital to their biological function or in some cases their dysfunction. However, even when the structure of a protein is known, the properties of its hydration environment cannot be easily predicted due to the complex interplay between protein surface heterogeneity and the collective structure of water’s hydrogen bonding network. This manuscript presents a theoretical study of the influence of surface charge heterogeneity on the polarization response of the liquid water interface. We focus our attention on classical point charge models of water, where the polarization response is limited to molecular reorientation. We introduce a new computational method for analyzing simulation data that is capable of quantifying water’s collective polarization response and determining the effective surface charge distribution of hydrated surfaces over atomistic length scales. To illustrate the utility of this method, we present the results of molecular dynamics simulations of liquid water in contact with a heterogeneous model surface and the CheY protein. 
    more » « less
  3. null (Ed.)